کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6596914 1423851 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Data and performance profiles applying an adaptive truncation criterion, within linesearch-based truncated Newton methods, in large scale nonconvex optimization
ترجمه فارسی عنوان
پروفیل داده ها و عملکرد با استفاده از معیار کوتاه مدت سازگار، در روش های نیوتن کوتاه شده مبتنی بر خطوط، در بهینه سازی غیرقابل اندازه گیری در مقیاس بزرگ
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
In this paper, we report data and experiments related to the research article entitled “An adaptive truncation criterion, for linesearch-based truncated Newton methods in large scale nonconvex optimization” by Caliciotti et al. [1]. In particular, in Caliciotti et al. [1], large scale unconstrained optimization problems are considered by applying linesearch-based truncated Newton methods. In this framework, a key point is the reduction of the number of inner iterations needed, at each outer iteration, to approximately solving the Newton equation. A novel adaptive truncation criterion is introduced in Caliciotti et al. [1] to this aim. Here, we report the details concerning numerical experiences over a commonly used test set, namely CUTEst (Gould et al., 2015) [2]. Moreover, comparisons are reported in terms of performance profiles (Dolan and Moré, 2002) [3], adopting different parameters settings. Finally, our linesearch-based scheme is compared with a renowned trust region method, namely TRON (Lin and Moré, 1999) [4].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data in Brief - Volume 17, April 2018, Pages 246-255
نویسندگان
, , , ,