کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6679769 1428064 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Dynamic modeling of a particle/supercritical CO2 heat exchanger for transient analysis and control
چکیده انگلیسی
A dynamic model of a moving packed-bed particle-to-sCO2 heat exchanger and control system for concentrating solar power (CSP) applications is presented. The shell-and-plate heat-exchanger model allows for numerically investigating the transient operation and control of the heat addition to the power cycle in a particle-based CSP plant. The aim of the particle-to-sCO2 heat exchanger is to raise the sCO2 temperature to 700 °C at a pressure of 20 MPa. The control system adjusts both the particle and sCO2 mass flow rates as well as an sCO2 bypass to obtain the desired sCO2 turbine inlet and particle outlet temperatures for a prescribed thermal duty. The control system is demonstrated for disturbances in particle and sCO2 inlet temperatures as well as changes in thermal duty for part-load operation. A feed-forward control strategy that adjusts the sCO2 and particle mass-flow rates as functions of measured inlet temperatures and a steady-state model solution was able to return the heat exchanger to the desired operating condition, but not without experiencing significant deviations in the sCO2 turbine inlet and particle outlet temperature (>40 °C) during the transient. To reduce both sCO2 and particle temperature deviations, a feedback control strategy was investigated, where sCO2 and particle mass-flow rates based on the steady-state model solution were corrected based on measured outlet temperature deviations. The feedback control strategy maintains sCO2 turbine inlet and particle outlet temperature to within 16 °C of the set points with a three-minute settling time for step changes in inlet conditions and thermal duty. This finding demonstrates the possibility of dynamically dispatching next-generation particle-based CSP plants driving sCO2 power cycles.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 226, 15 September 2018, Pages 595-606
نویسندگان
, , ,