کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6680225 | 1428068 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evaluation of peer-to-peer energy sharing mechanisms based on a multiagent simulation framework
ترجمه فارسی عنوان
ارزیابی مکانیزم های به اشتراک گذاری انرژی همکار به یکسان بر اساس یک چارچوب شبیه سازی چند منظوره
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
چکیده انگلیسی
Peer-to-peer (P2P) energy sharing involves novel technologies and business models at the demand-side of power systems, which is able to manage the increasing connection of distributed energy resources (DERs). In P2P energy sharing, prosumers directly trade energy with each other to achieve a win-win outcome. From the perspectives of power systems, P2P energy sharing has the potential to facilitate local energy balance and self-sufficiency. A systematic index system was developed to evaluate the performance of various P2P energy sharing mechanisms based on a multiagent-based simulation framework. The simulation framework is composed of three types of agents and three corresponding models. Two techniques, i.e. step length control and learning process involvement, and a last-defence mechanism were proposed to facilitate the convergence of simulation and deal with the divergence. The evaluation indexes include three economic indexes, i.e. value tapping, participation willing and equality, and three technical indexes, i.e. energy balance, power flatness and self-sufficiency. They are normalised and further synthesized to reflect the overall performance. The proposed methods were applied to simulate and evaluate three existing P2P energy sharing mechanisms, i.e. the supply and demand ratio (SDR), mid-market rate (MMR) and bill sharing (BS), for residential customers in current and future scenarios of Great Britain. Simulation results showed that both of the step length control and learning process involvement techniques improve the performance of P2P energy sharing mechanisms with moderate ramping/learning rates. The results also showed that P2P energy sharing has the potential to bring both economic and technical benefits for Great Britain. In terms of the overall performance, the SDR mechanism outperforms all the other mechanisms, and the MMR mechanism has good performance when with moderate PV penetration levels. The BS mechanism performs at the similar level as the conventional paradigm. The conclusion on the mechanism performance is not sensitive to season factors, day types and retail price schemes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 222, 15 July 2018, Pages 993-1022
Journal: Applied Energy - Volume 222, 15 July 2018, Pages 993-1022
نویسندگان
Yue Zhou, Jianzhong Wu, Chao Long,