کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6689152 501889 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis
ترجمه فارسی عنوان
تکنیک های بوت استرپ برای تجزیه و تحلیل حساسیت و انتخاب مدل در ساخت تجزیه و تحلیل عملکرد حرارتی
کلمات کلیدی
عملکرد حرارتی ساختمان، روش بوت استرپ، تجزیه و تحلیل میزان حساسیت، انتخاب مدل،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی
In regression analysis, there are two main aims: interpretation and prediction, which can be also applied in building performance analysis. Interpretation is used to understand the relationship between input parameters and building energy performance (also called sensitivity analysis), whereas prediction is used to create a reliable energy model to estimate building energy consumption. This article explores the implementation of a distribution-free bootstrap method for these two purposes. The bootstrap is a resampling method that enables assessment of the accuracy of an estimator by random sampling with replacement from an original dataset. An office building is used as a case study to demonstrate the application of this method in assessing building thermal performance. The results indicate that the probabilistic sensitivity analysis incorporating the bootstrap approach provides valuable insights into the variations in sensitivity indicators, which are not available from typical deterministic sensitivity analysis. The single point values from deterministic methods may lead to misleading prioritization of energy saving measures because they do not provide the distributions of sensitivity indicators. Information on prediction errors obtained from the bootstrap method can facilitate the selection of an appropriate building energy metamodel to more accurately predict the energy consumption of buildings, compared with the traditional one-time data splitting method (also called holdout cross-validation method), which partitions the data into a training set and a test set.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 135, 15 December 2014, Pages 320-328
نویسندگان
, , , ,