کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6697506 | 1428356 | 2018 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
WinProGen: A Markov-Chain-based stochastic window status profile generator for the simulation of realistic energy performance in buildings
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
New and retrofitted buildings often do not perform as expected. In fact, the real energy performance of a building depends on deterministic characteristics (e.g. building's structure and HVAC), and on stochastic elements (e.g. occupants' behavior). Probabilistic models of occupant behavior in the simulation of buildings' energy performance can help to bridge the gap between prediction and real energy consumption. With this aim, a stochastic window status profile generator (WinProGen) is introduced, validated (using the Markov chain Monte Carlo technique) through observations from field tests, and tested through dynamic building simulations. In WinProGen, we implemented three models for the generation of window state profiles, based on field test data, with a time resolution of 1â¯min. The profiles generated from model 1 depend on the time of the day and the daily average ambient temperature. The profiles generated from model 2 depend on the time of the day, on the daily average ambient temperature and on the day of the week (working day or weekend day). The profiles generated from model 3 depend on the time of the day, on the daily average ambient temperature of the actual day and on the daily average ambient temperature of the past day. The generated profiles can be used as an input to simulate dynamic building energy performance. Moreover, users can include in WinProGen their own field test data to generate own state profiles. The dynamic simulation of two demonstrator buildings with the generated window state profiles offers reliable predictions of buildings' energy performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Building and Environment - Volume 136, 15 May 2018, Pages 240-258
Journal: Building and Environment - Volume 136, 15 May 2018, Pages 240-258
نویسندگان
Davide Calì, Mark Thomas Wesseling, Dirk Müller,