کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
670428 1459010 2016 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting large experimental excess pressure drops for Boger fluids in contraction-expansion flow
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Predicting large experimental excess pressure drops for Boger fluids in contraction-expansion flow
چکیده انگلیسی
More recent finite element/volume studies on pressure-drops in contraction flows have introduced a variety of constitutive models to compare and contrast the competing influences of extensional viscosity, normal stress and shear-thinning. In this study, the ability of an extensional White-Metzner construction with FENE-CR model is explored to reflect enhanced excess pressure drops (epd) in axisymmetric 4:1:4 contraction-expansion flows. Solvent-fraction is taken as β = 0.9, to mimic viscoelastic constant shear-viscosity Boger fluids. The experimental pressure-drop data of Rothstein & McKinley [1] has been quantitatively captured (in the initial pronounced rise with elasticity, and limiting plateau-patterns), via two modes of numerical prediction: (i) flow-rate Q-increase, and (ii) relaxation-time λ1-increase. Here, the former Q-increase mode, in line with experimental procedures, has proved the more effective, generating significantly larger enhanced-epd. This is accompanied with dramatically enhanced trends with De-incrementation in vortex-activity, and significantly larger extrema in N1, shear-stress and related extensional and shear velocity-gradient components. In contrast, the λ1-increase counterpart trends remain somewhat invariant to elasticity rise. Moreover, under Q-increase and with elasticity rise, a pattern of flow transition has been identified through three flow-phases in epd-data; (i) steady solutions for low-to-moderate elasticity levels, (ii) oscillatory solutions in the moderate elasticity regime (coinciding with Rothstein and McKinley [1] data), and (iii) finally solution divergence. New to this hybrid algorithmic formulation are - techniques in time discretisation, discrete treatment of pressure terms, compatible stress/velocity-gradient representation; handling ABS-correction in the constitutive equation, which provides consistent material-property prediction; and introducing purely-extensional velocity-gradient component specification at the shear-free centre flow-line through the velocity gradient (VGR) correction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Non-Newtonian Fluid Mechanics - Volume 230, April 2016, Pages 43-67
نویسندگان
, , , ,