کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
670794 1459057 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inertial theories for dilute viscoelastic polymer blends with a volume preserving microstructure
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Inertial theories for dilute viscoelastic polymer blends with a volume preserving microstructure
چکیده انگلیسی

The rheology, microstructure, and non-Newtonian fluid mechanics of dilute immiscible polymer blends are investigated. To derive thermodynamically consistent flow equations for these materials, the Hamiltonian framework of non-equilibrium Thermodynamics is adopted. For a given set of non-equilibrium variables, this formalism allows to derive a set of local rate equations from a Poisson bracket, a dissipation bracket, and a Hamiltonian functional. Flow equations for polymer blends with inertia are developed and the theory is reduced to a set of flow equations without inertia. Furthermore, the viscosity coefficients of the non-inertial theory (coarser level of description) are expressed in terms of the viscosity coefficients of the inertial theory (finer level of description). It is shown that non-equilibrium Thermodynamics allows to derive local rate equations for materials as complex as polymer blends and that non-equilibrium Thermodynamics allows to coarse or fine grain between several levels of description. Finally, it is explained how the flow equations derived herein can be applied to describe polymer blend flow and single droplet deformation in flow geometries which are so small to influence the microstructural dynamics and in particular the droplet dynamics in polymer blends.


► Development of a flow theory for polymer blends which accounts for droplet inertia.
► Derivation of model parameters for polymer blend rheology from an inertial flow theory.
► Comparison of the inclusion of droplet inertia vs. “active advection” in polymer blend modeling.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Non-Newtonian Fluid Mechanics - Volumes 173–174, April 2012, Pages 40–48
نویسندگان
,