کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6728295 | 1428923 | 2018 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development and application of a machine learning supported methodology for measurement and verification (M&V) 2.0
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A novel and computationally efficient feature selection algorithm and powerful machine learning regression algorithms are employed to maximise the effectiveness of available data. The baseline period energy consumption is modelled using artificial neural networks, support vector machines, k-nearest neighbours and multiple ordinary least squares regression. Improved knowledge discovery and an expanded boundary of analysis allow more complex energy systems be analysed, thus increasing the applicability of M&V. A case study in a large biomedical manufacturing facility is used to demonstrate the methodology's ability to accurately quantify the savings under real-world conditions. The ECM was found to result in 604,527â¯kWh of energy savings with 57% uncertainty at a confidence interval of 68%. 20 baseline energy models are developed using an exhaustive approach with the optimal model being used to quantify savings. The range of savings estimated with each model are presented and the acceptability of uncertainty is reviewed. The case study demonstrates the ability of the methodology to perform M&V to an acceptable standard in challenging circumstances.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 167, 15 May 2018, Pages 8-22
Journal: Energy and Buildings - Volume 167, 15 May 2018, Pages 8-22
نویسندگان
Colm V. Gallagher, Kevin Leahy, Peter O'Donovan, Ken Bruton, Dominic T.J. O'Sullivan,