کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6728401 | 1428923 | 2018 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Building energy optimisation under uncertainty using ACOMV algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This study develops a new scenario-based optimisation methodology to address building parameter uncertainty. A multi-objective optimisation problem based on three objective functions (“low”, “base”, and “high” simulation scenarios) is developed and scalarised using the weighted sum method to find the optimised compromise between energy use for different scenarios. Necessitated by the increased computational demand of multi-objective problems, a modified version of the Ant Colony Optimisation algorithm for Mixed Variables (ACOMV-M) is developed. A comparison between ACOMV-M and a benchmark algorithm showed that ACOMV-M converged to solutions of similar quality with approximately 50% fewer simulations. The results on an Australian office building showed that the energy-optimised building parameters can vary significantly for different assumptions. Furthermore, inaccurate assumptions on internal loads and infiltration rate can reduce energy savings achieved by optimisation up toâ4.8 percentage points. The proposed methodology is used to identify parameters that are sensitive to different scenarios and demonstrated that more robust solutions can be achieved through modest sacrifices in optimality to any one scenario.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 167, 15 May 2018, Pages 322-333
Journal: Energy and Buildings - Volume 167, 15 May 2018, Pages 322-333
نویسندگان
Keivan Bamdad, Michael E. Cholette, Lisa Guan, John Bell,