کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6728606 | 1428925 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Application of a multiple linear regression and an artificial neural network model for the heating performance analysis and hourly prediction of a large-scale ground source heat pump system
ترجمه فارسی عنوان
استفاده از رگرسیون چندگانه خطی و مدل شبکه عصبی مصنوعی برای تجزیه و تحلیل عملکرد حرارتی و پیش بینی ساعات پمپ گرمایی در مقیاس بزرگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
A ground source heat pump system (GSHP) with 450 RT capacity composed of ten heat pump units provides the heating and cooling energy to an entire hospital building. The seasonal heating performance of 3.21 and system operation properties of the system were analyzed using in situ monitoring data from Nov. 2016 to Mar. 2017. On this basis, hourly GSHP system performance prediction models applying a multiple linear regression (MLR) and an artificial neural network (ANN) were developed. The quantitative effects of influencing variables on the system performance, including the entering source and load water temperatures (EST, ELT) were analyzed by elaborated MLR model with statistical significance. The prediction accuracy was 3.56% by the MLR, and 1.75% by the ANN, based on the coefficient of variation of root mean squared error (CVRMSE) without overall bias. These prediction models can be used as a baseline for the measurement and verification (M&V) of possible future energy conservation measures and real-time performance monitoring to check malfunction of the system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 165, 15 April 2018, Pages 206-215
Journal: Energy and Buildings - Volume 165, 15 April 2018, Pages 206-215
نویسندگان
Sang Ku Park, Hyeun Jun Moon, Kyung Chon Min, Changha Hwang, Suduk Kim,