| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6730240 | 504020 | 2016 | 38 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Managing demand uncertainty with cost-for-deviation retail pricing
												
											ترجمه فارسی عنوان
													مدیریت عدم قطعیت تقاضا با قیمت گذاری برای قیمت انحراف قیمت خرده فروشی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												خرده فروشی برق، مدیریت سمت تقاضا، انرژی گذرا، عدم قطعیت تقاضا، کنترل پیش بینی مدل،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی انرژی
													انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
												
											چکیده انگلیسی
												The current rate structures for the electricity retailing exposes utility providers to the full wholesale market risks, and fail to incentivize end-use customers to better estimate and track their loads. In this paper, we propose a Cost-for-Deviation (CfD) retail-pricing scheme, which is designed to minimize the demand uncertainty of individual customers or communities. We formulate day-ahead planning and real-time tracking optimization problems for individual buildings. We also formulate CfD pricing scheme for community of two buildings and devise a collaboration scheme by which the two buildings negotiate. Both centralized and distributed negotiation mechanisms are presented, and the significance of adopting a transaction cost for fair-trading is discussed. A series of experiments demonstrate that CfD pricing is able to reduce demand uncertainty in a building or a community. Hence, a community's cost of hedging quantity risk in the real-time market also reduces. Our conjecture is that by the virtue of end users being in a position to closely monitor their daily loads and by paying fines for not adhering to their plans would ultimately benefit energy efficiency and will reduce infrastructure costs.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 118, 15 April 2016, Pages 46-56
											Journal: Energy and Buildings - Volume 118, 15 April 2016, Pages 46-56
نویسندگان
												Jianmin Zhu, Seyed A. Vaghefi, Mohsen A. Jafari, Yan Lu, Ali Ghofrani, 
											