کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6777399 | 1432061 | 2018 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Experimental study of rectangular multi-partition steel-concrete composite shear walls
ترجمه فارسی عنوان
مطالعه تجربی دیوارهای برشی کامپوزیتی چندبعدی مستطیل شکل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
دیوارهای برشی کامپوزیت رفتار فشرده، رفتار لرزه ای، نسبت بار محوری، چند پارتیشن،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی عمران و سازه
چکیده انگلیسی
Multi-partition composite shear walls have the strong points, such as high load-carrying capacity, good ductility, excellent energy dissipation capacity and fast construction speed. Even if they were used in the buildings, there was a little research work on this kind of composite shear walls. To study the axial behavior and cyclic behavior of multi-partition composite shear walls, six axially loaded specimens were tested, and two specimens were tested under horizontal cyclic load. Through testing of specimens, the damage progression, failure mechanism, stiffness and energy dissipation of composite shear walls were investigated. The experimental results showed that this kind shear walls under axial load had high load-carrying capacity and good ductility. The steel section could confine the core concrete, whose capacity was higher than that the summation capacity of steel section and core concrete. The shear walls exhibited excellent energy dissipation ability under high axial load ratio. Because of the confinement of steel section, the specimen showed higher energy dissipation capacity with the increasing of axial load ratio. However, the ductility of the specimen under cyclic load decreased with the increasing of axial load ratio. The experimental results were compared with the calculated results calculated by EC4, AISC and CECS. The results showed that all design codes underestimated the axial compressive capacity of the specimens. For specimens subjected to cyclic load, the results based on EC4 were the nearest to the experimental results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin-Walled Structures - Volume 130, September 2018, Pages 577-592
Journal: Thin-Walled Structures - Volume 130, September 2018, Pages 577-592
نویسندگان
Lanhui Guo, Yunhe Wang, Sumei Zhang,