کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6807269 1433581 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease
ترجمه فارسی عنوان
یک مطالعه اولیه از نمای کلی بیان ژنوم در مورد بیماری آلزایمر که به تازگی مبتلا شده است
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
چکیده انگلیسی
Alzheimer's disease (AD) is the most common neurodegenerative dementia. Approximately 10% of cases present at an age of onset before 65 years old, which in turn can be monogenic familial AD (FAD) or sporadic early-onset AD (sEOAD). Mutations in PSEN1, PSEN2, and APP genes have been linked with FAD. The aim of our study is to describe the brain whole-genome RNA expression profile of the posterior cingulate area in sEOAD and FAD caused by PSEN1 mutations (FAD-PSEN1). Fourteen patients (7 sEOAD and 7 FAD-PSEN1) and 7 neurologically healthy control subjects were selected and whole-genome expression was measured using Affymetrix Human Gene 1.1 microarrays. We identified statistically significant expression changes in sEOAD and FAD-PSEN1 brains with respect to control subjects (3183 and 3350 differentially expressed genes [DEG] respectively, false discovery rate-corrected p < 0.05). Of them, 1916 DEG were common between the 2 comparisons. We did not identify DEG between sEOAD and FAD-PSEN1. Microarray data were validated through real-time quantitative polymerase chain reaction. In silico analysis of DEG revealed an alteration in biological pathways related to intracellular signaling pathways (particularly calcium signaling), neuroactive ligand-receptor interactions, axon guidance, and long-term potentiation in both groups of patients. In conclusion, the altered biological final pathways in sEOAD and FAD-PSEN1 are mainly related with cell signaling cascades, synaptic plasticity, and learning and memory processes. We hypothesize that these 2 groups of early-onset AD with distinct etiologies and likely different could present a neurodegenerative process with potential different pathways that might converge in a common and similar final stage of the disease.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurobiology of Aging - Volume 34, Issue 7, July 2013, Pages 1772-1778
نویسندگان
, , , , , , , , ,