کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6808888 1433593 2012 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ultrastructural alterations of Alzheimer's disease paired helical filaments by grape seed-derived polyphenols
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Ultrastructural alterations of Alzheimer's disease paired helical filaments by grape seed-derived polyphenols
چکیده انگلیسی
Abnormal folding of the microtubule-associated protein tau leads to aggregation of tau into paired helical filaments (PHFs) and neurofibrillary tangles, the major hallmark of Alzheimer's disease (AD). We have recently shown that grape seed polyphenol extract (GSPE) reduces tau pathology in the TMHT mouse model of tauopathy (Wang et al., 2010). In the present studies we assessed the impact of GSPE exposure on the ultrastructure of PHFs isolated from Alzheimer's disease brain. Transmission electron microscopy revealed that GSPE induced profound dose- and time-dependent alterations in the morphology of PHFs with partial disintegration of filaments. Filaments showed ∼2-fold enlargement in width and displayed numerous protrusions and splayed ends consistent with unfolding of tau and diminished structural stability. In addition, GSPE induced a reduction in immunogold labeling with antibodies against the C-terminal half (12E8, PHF-1) and the middle region of tau (AT8, Tau5, pSer214 tau, and AT180) but not the C-terminal end (Tau46). In comparison, labeling of N-terminus (Alz50) was enhanced. It is unlikely that alterations in immunogold labeling were due to biochemical alterations, e.g., protein phosphatase or proteolytic activities potentially stimulated by GSPE, because western blotting studies have shown the preservation of full length polypeptides of tau and their phospho-epitopes in GSPE-treated samples. The GSPE mechanism may include a noncovalent interaction of polyphenols with proline residues in the proline-rich domain of tau, with Pin1 sites at P213 and P232 most seriously affected as judged by suppression of labeling. Collectively, our results suggest that GSPE has a significant potential for therapeutic development by neutralizing phospho-epitopes and disrupting fibrillary conformation leading to disintegration of PHFs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurobiology of Aging - Volume 33, Issue 7, July 2012, Pages 1427-1439
نویسندگان
, , , , , ,