کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6853889 | 1437278 | 2018 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hierarchical partitioning of the output space in multi-label data
ترجمه فارسی عنوان
پارتیشن بندی سلسله مراتبی فضای خروجی در چند برچسب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
کشف دانش، فراگیری ماشین، نظارت بر یادگیری، استخراج متن،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Hierarchy Of Multi-label classifiERs (HOMER) is a multi-label learning algorithm that breaks the initial learning task to several, easier sub-tasks by first constructing a hierarchy of labels from a given label set and secondly employing a given base multi-label classifier (MLC) to the resulting sub-problems. The primary goal is to effectively address class imbalance and scalability issues that often arise in real-world multi-label classification problems. In this work, we present the general setup for a HOMER model and a simple extension of the algorithm that is suited for MLCs that output rankings. Furthermore, we provide a detailed analysis of the properties of the algorithm, both from an aspect of effectiveness and computational complexity. A secondary contribution involves the presentation of a balanced variant of the k means algorithm, which serves in the first step of the label hierarchy construction. We conduct extensive experiments on six real-world data sets, studying empirically HOMER's parameters and providing examples of instantiations of the algorithm with different clustering approaches and MLCs, The empirical results demonstrate a significant improvement over the given base MLC.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data & Knowledge Engineering - Volume 116, July 2018, Pages 42-60
Journal: Data & Knowledge Engineering - Volume 116, July 2018, Pages 42-60
نویسندگان
Yannis Papanikolaou, Grigorios Tsoumakas, Ioannis Katakis,