کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6858719 | 671006 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
k-Nearest neighbor searching in hybrid spaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Little work has been reported in the literature to support k-nearest neighbor (k-NN) searches/queries in hybrid data spaces (HDS). An HDS is composed of a combination of continuous and non-ordered discrete dimensions. This combination presents new challenges in data organization and search ordering. In this paper, we present an algorithm for k-NN searches using a multidimensional index structure in hybrid data spaces. We examine the concept of search stages and use the properties of an HDS to derive a new search heuristic that greatly reduces the number of disk accesses in the initial stage of searching. Further, we present a performance model for our algorithm that estimates the cost of performing such searches. Our experimental results demonstrate the effectiveness of our algorithm and the accuracy of our performance estimation model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Systems - Volume 43, July 2014, Pages 55-64
Journal: Information Systems - Volume 43, July 2014, Pages 55-64
نویسندگان
Dashiell Kolbe, Qiang Zhu, Sakti Pramanik,