کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6858810 | 1438409 | 2018 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Uncertain Logic Processing: logic-based inference and reasoning using Dempster-Shafer models
ترجمه فارسی عنوان
پردازش منطقی نامشخص: استنتاج مبتنی بر منطق و استدلال با استفاده از مدل های دمپستر-شفر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
First order logic lies at the core of many methods in mathematics, philosophy, linguistics, and computer science. Although important efforts have been made to extend first order logic to the task of handling uncertainty, existing solutions are sometimes limited by the way they model uncertainty, or simply by the complexity of the problem formulation. These approaches could be strengthened by adding more flexibility in assigning probabilities (e.g., through intervals) and a more rigorous method of assigning probability/uncertainty measures. In this paper we present the basic theory of Uncertain Logic Processing (ULP), a robust framework for modeling and inference when information is available in the form of first order logic formulas subject to uncertainty. Dempster-Shafer (DS) theory provides the substrate for uncertainty modeling in the proposed ULP formulation. ULP can be tuned to preserve consistency with classical logic, allowing it to incorporate typical inference rules and properties, while preserving the strength of DS theory for representing and manipulating uncertainty.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 95, April 2018, Pages 1-21
Journal: International Journal of Approximate Reasoning - Volume 95, April 2018, Pages 1-21
نویسندگان
Rafael C. Núñez, Manohar N. Murthi, Kamal Premaratne, Matthias Scheutz, Otávio Bueno,