کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6858906 1438424 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A survey of lifted inference approaches for probabilistic logic programming under the distribution semantics
ترجمه فارسی عنوان
یک بررسی از رویکردهای استنتاج حذف شده برای برنامه ریزی منطق احتمالی تحت معانی توزیع
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Lifted inference aims at answering queries from statistical relational models by reasoning on populations of individuals as a whole instead of considering each individual singularly. Since the initial proposal by David Poole in 2003, many lifted inference techniques have appeared, by lifting different algorithms or using approximation involving different kinds of models, including parfactor graphs and Markov Logic Networks. Very recently lifted inference was applied to Probabilistic Logic Programming (PLP) under the distribution semantics, with proposals such as LP2 and Weighted First-Order Model Counting (WFOMC). Moreover, techniques for dealing with aggregation parfactors can be directly applied to PLP. In this paper we survey these approaches and present an experimental comparison on five models. The results show that WFOMC outperforms the other approaches, being able to exploit more symmetries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 80, January 2017, Pages 313-333
نویسندگان
, , , , ,