کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6858960 | 1438462 | 2013 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Independence for full conditional probabilities: Structure, factorization, non-uniqueness, and Bayesian networks
ترجمه فارسی عنوان
استقلال برای احتمالات شرطی کامل: ساختار، تقسیم بندی، غیر منحصر به فرد و شبکه های بیزی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
احتمالات شرطی کامل، احتمال احتمالی، مفاهیم استقلال، خواص گرافوئیدی، شبکه های بیزی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This paper examines concepts of independence for full conditional probabilities; that is, for set-functions that encode conditional probabilities as primary objects, and that allow conditioning on events of probability zero. Full conditional probabilities have been used in economics, in philosophy, in statistics, in artificial intelligence. This paper characterizes the structure of full conditional probabilities under various concepts of independence; limitations of existing concepts are examined with respect to the theory of Bayesian networks. The concept of layer independence (factorization across layers) is introduced; this seems to be the first concept of independence for full conditional probabilities that satisfies the graphoid properties of Symmetry, Redundancy, Decomposition, Weak Union, and Contraction. A theory of Bayesian networks is proposed where full conditional probabilities are encoded using infinitesimals, with a brief discussion of hyperreal full conditional probabilities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 54, Issue 9, November 2013, Pages 1261-1278
Journal: International Journal of Approximate Reasoning - Volume 54, Issue 9, November 2013, Pages 1261-1278
نویسندگان
Fabio G. Cozman,