کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6861341 1439247 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Combining Markov model and Prediction by Partial Matching compression technique for route and destination prediction
ترجمه فارسی عنوان
ترکیب مدل مارکوف و پیش بینی با استفاده از تکنیک تطبیق جزئی برای پیش بینی مسیر و مقصد
کلمات کلیدی
پیش بینی مسیر و مقصد، پیش بینی مسیر، پیش بینی زمان واقعی، الگوهای تحرک، پیش بینی توسط تطبیق جزئی، مدل مارکف، سیستم های حمل و نقل هوشمند
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Thanks to the built-in GPS device embedded in almost all smartphones, the facility of tracking users' positions fostered new research opportunities. Among these opportunities, of particular interest in this work is the field of route and destination prediction. Suggesting a user to take a deviation to avoid a congested route is among the potential benefits of our research. Many of the approaches available in the literature consolidate the Markov model as suitable to prediction. Moreover, the Prediction by Partial Matching (PPM) compression technique has presented encouraging results for predicting route and destination. Thus, this paper proposes a novel predictor that combines Markov model with PPM technique, extracting the better of these two approaches. Our user-personalized predictor is able to predict the route and destination automatically in a real-time manner, including places never visited by the user. We evaluated our model with real world data collected from 21 users, obtaining a precision rate between 63% and 82%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 154, 15 August 2018, Pages 81-92
نویسندگان
, , ,