| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 6861360 | 1439248 | 2018 | 47 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Trusted system-calls analysis methodology aimed at detection of compromised virtual machines using sequential mining
												
											ترجمه فارسی عنوان
													روش اعتبار سنجی تماس سیستم با هدف شناسایی آسیب پذیری ماشین مجازی با استفاده از معدن پی در پی است 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													هوش مصنوعی
												
											چکیده انگلیسی
												Most organizations today employ cloud-computing environments and virtualization technology; Due to their prevalence and importance in providing services to the entire organization, virtual-servers are constantly targeted by cyber-attacks, and specifically by malware. Existing solutions, consisting of the widely-used antivirus (AV) software, fail to detect newly created and unknown-malware; moreover, by the time the AV is updated, the organization has already been attacked. In this paper, we present a during run-time analysis methodology for a trusted detection of unknown malware on virtual machines (VMs). We conducted trusted analysis of volatile memory dumps taken from a VM and focused on analyzing their system-calls using a sequential-mining-method. We leveraged the most informative system-calls by machine-learning algorithms for the efficient detection of malware in widely used VMs within organizations (i.e. IIS and Email server). We evaluated our methodology in a comprehensive set of experiments over a collections of real-world, advanced, and notorious malware (both ransomware and RAT), and legitimate programs. The results show that our suggested methodology is able to detect the presence of unknown malware, in an average of 97.9% TPR and 0% FPR. Such results and capabilities can form the ground for the development of practical detection-tools for both corporates and companies.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 153, 1 August 2018, Pages 147-175
											Journal: Knowledge-Based Systems - Volume 153, 1 August 2018, Pages 147-175
نویسندگان
												Nir Nissim, Yuval Lapidot, Aviad Cohen, Yuval Elovici, 
											