کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6861414 | 1439250 | 2018 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Semi-supervised discriminative clustering with graph regularization
ترجمه فارسی عنوان
خوشه بندی جداسازی نیمه نظارت با تنظیم درست گراف
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
خوشه بندی نیمه نظارت، مدل تبعیض آمیز، محدودیت های پویا، خوشه بندی گراف،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper we propose a novel semi-supervised method, d-graph, which does not assume any predefined structure of clusters. We follow a discriminative approach and use logistic function to directly model posterior probabilities p(k|x) that point x belongs to kth cluster. Making use of these posterior probabilities we maximize the expected probability that pairwise constraints are preserved. To include unlabeled data in our clustering objective function, we introduce additional pairwise constraints so that nearby points are more likely to appear in the same cluster. The proposed model can be easily optimized with the use of gradient techniques and kernelized, which allows to discover arbitrary shapes and structures in data. The experimental results performed on various types of data demonstrate that d-graph obtains better clustering results than comparative state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 151, 1 July 2018, Pages 24-36
Journal: Knowledge-Based Systems - Volume 151, 1 July 2018, Pages 24-36
نویسندگان
Marek Åmieja, Oleksandr Myronov, Jacek Tabor,