کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6861439 | 1439250 | 2018 | 56 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
CrumbTrail: An efficient methodology to reduce multiple inheritance in knowledge graphs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we present CrumbTrail, an algorithm to clean large and dense knowledge graphs. CrumbTrail removes cycles, out-of-domain nodes and non-essential nodes, i.e., those that can be safely removed without breaking the knowledge graph's connectivity. It achieves this through a bottom-up topological pruning on the basis of a set of input concepts that, for instance, a user can select in order to identify a domain of interest. Our technique can be applied to both noisy hypernymy graphs - typically generated by ontology learning algorithms as intermediate representations - as well as crowdsourced resources like Wikipedia, in order to obtain clean, domain-focused concept hierarchies. CrumbTrail overcomes the time and space complexity limitations of current state-of-art algorithms. In addition, we show in a variety of experiments that it also outperforms them in tasks such as pruning automatically acquired taxonomy graphs, and domain adaptation of the Wikipedia category graph.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 151, 1 July 2018, Pages 180-197
Journal: Knowledge-Based Systems - Volume 151, 1 July 2018, Pages 180-197
نویسندگان
Stefano Faralli, Irene Finocchi, Simone Paolo Ponzetto, Paola Velardi,