کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6861453 1439251 2018 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Regularized fisher linear discriminant through two threshold variation strategies for imbalanced problems
ترجمه فارسی عنوان
از طریق دو استراتژی تناوب آستانه ای برای مشکلات ناسازگار، خط مشی متمایز کننده خط مقدم را تعیین می کند
کلمات کلیدی
داده های نامتعادل طبقه بندی الگو، فیشر خطی فیشر، منظم سازی، یادگیری اکتشافی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Fisher Linear Discriminant (FLD) has been widely applied to classification tasks due to its simple structure, analytical optimization, and useful criterion. However, when dealing with imbalanced datasets, even though the weight vector of FLD could be trained correctly to preserve the global distribution information of samples, the threshold of FLD might be seriously misled by the extreme proportion of classes. In order to modify the threshold and preserve the weight vector at the same time so as to improve FLD in imbalanced cases, this paper first regularizes the original FLD in a way inspired by the locality preserving projection, and then utilizes two strategies to optimize the threshold: the multi-thresholds selection strategy trains several FLDs with different empirically-defined thresholds, and then selects the optimal threshold out; the threshold-eliminated strategy generates two hyperplanes parallel to the original one built by FLD, and then utilizes a heuristic similarity metric for prediction. It is seen that the former seeks new threshold instead of the old one, while the latter ignores the original threshold. After introducing both strategies into the regularized FLD, two new classifiers are proposed in this paper and abbreviated as RFLD-S1 and RFLD-S2, respectively. Subsequently, the comprehensive comparison experiments on forty-one datasets among nine typical classifiers validate the effectiveness of the proposed methods. Especially, RFLD-S1 performs better than RFLD-S2 and achieves the best on most datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 150, 15 June 2018, Pages 57-73
نویسندگان
, , , ,