کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6861521 | 1439253 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid unsupervised method for aspect term and opinion target extraction
ترجمه فارسی عنوان
روش غیرمستقیم هیبریدی برای ترکیب جنبه و تفکر هدف
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Aspect term extraction (ATE) and opinion target extraction (OTE) are two important tasks in fine-grained sentiment analysis field. Existing approaches to ATE and OTE are mainly based on rules or machine learning methods. Rule-based methods are usually unsupervised, but they can't make use of high level features. Although supervised learning approaches usually outperform the rule-based ones, they need a large number of labeled samples to train their models, which are expensive and time-consuming to annotate. In this paper, we propose a hybrid unsupervised method which can combine rules and machine learning methods to address ATE and OTE tasks. First, we use chunk-level linguistic rules to extract nominal phrase chunks and regard them as candidate opinion targets and aspects. Then we propose to filter irrelevant candidates based on domain correlation. Finally, we use these texts with extracted chunks as pseudo labeled data to train a deep gated recurrent unit (GRU) network for aspect term extraction and opinion target extraction. The experiments on benchmark datasets validate the effectiveness of our approach in extracting opinion targets and aspects with minimal manual annotation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 148, 15 May 2018, Pages 66-73
Journal: Knowledge-Based Systems - Volume 148, 15 May 2018, Pages 66-73
نویسندگان
Chuhan Wu, Fangzhao Wu, Sixing Wu, Zhigang Yuan, Yongfeng Huang,