کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6861846 1439259 2018 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evidential K-NN classification with enhanced performance via optimizing a class of parametric conjunctive t-rules
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Evidential K-NN classification with enhanced performance via optimizing a class of parametric conjunctive t-rules
چکیده انگلیسی
Dempster's rule of combination is commonly used to pool distinct/independent bodies of evidence in the evidential k-nearest neighbor (K-NN) classifier, which sometimes limits the performance of this classifier. To solve this problem, we propose a class of parametric conjunctive combination rules based on a new family of triangular norms with selectable functions and tunable parameters. We show that the performance of the evidential K-NN classifier can be enhanced via this class of so-called parametric conjunctive t-rules when appropriate functions and parameters are selected. Numerical simulations validate our conclusions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 142, 15 February 2018, Pages 7-16
نویسندگان
, , , ,