کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6862034 | 1439262 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Open asynchronous dynamic cellular learning automata and its application to allocation hub location problem
ترجمه فارسی عنوان
اتوماسیون اتوماتیک یادگیری سلولی پویا و کاربرد آن را به مسئله محل توزیع تخصیص باز کنید
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اتوماتای یادگیری، اتوماتای یادگیری تلفن همراه، مشکل موقعیت محل توزیع فاصله های نامناسب،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Cellular learning automata (CLAs) are learning models that bring together the computational power of cellular automata and also the learning capability of learning automata in unknown environments. CLAs can be open or closed. In a closed CLA, the action of each learning automaton depends on the neighboring cells, whereas in an open CLA, the action of each learning automaton depends on the neighboring cells, and a global environment. These models can be synchronous or asynchronous. In a synchronous CLA, all cells are activated at the same time, but in an asynchronous CLA, at a given time only some cells are activated. These models can be also static or dynamic. In a dynamic CLA, one of its aspects such as structure, local rule or neighborhood may vary with time. All existing dynamic models of the CLAs are closed. In this paper, an open asynchronous dynamic CLA has been introduced. In order to show the potential of this model, an algorithm based on this model for solving allocation hub location problem with imprecise distances among nodes has been designed. To evaluate the proposed algorithm computer simulations have been conducted. The results of simulations show that the proposed algorithm is more robust to imprecise distances as compared to existing algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 139, 1 January 2018, Pages 149-169
Journal: Knowledge-Based Systems - Volume 139, 1 January 2018, Pages 149-169
نویسندگان
Ali Mohammad Saghiri, Mohammad Reza Meybodi,