کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6862139 | 1439264 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Kernel framework based on non-negative matrix factorization for networks reconstruction and link prediction
ترجمه فارسی عنوان
چارچوب هسته بر اساس فاکتورهای ماتریس غیر منفی برای بازسازی شبکه ها و پیش بینی لینک
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
پیش بینی پیوند، تقسیم ماتریس غیر منفی، چارچوب هسته ای،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Link prediction aims to extract missing informations, identify spurious interactions and potential informations in complex networks. Similarity-based methods, maximum likelihood methods and probabilistic models are the mainstreaming classes algorithms for link prediction. Meanwhile, low rank matrix approximation has been widely used in networks analysis and it can extract more useful features hidden in the original data through some kernel-induced nonlinear mapping. In this paper, based on the non-negative matrix factorization (NMF), we propose a kernel framework for link prediction and network reconstruction by using different kernels which could get both global and local information of the network through kernel mapping. In detailed, we map the adjacency matrix of the network to another feature space by two kernel functions, the Linear Kernel and Covariance Kernel, which have the principled interpretations for the network analysis and link predication. We test the AUC and Precision of widely used methods on a series of real world networks with different proportions of the training sets, experimental results show that our proposed framework has more robust and accurate performance compared with state-of-the-art methods. Remarkably, our approach also has the potential to address the problem of link prediction using small fraction of training set.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 137, 1 December 2017, Pages 104-114
Journal: Knowledge-Based Systems - Volume 137, 1 December 2017, Pages 104-114
نویسندگان
Wenjun Wang, Yiding Feng, Pengfei Jiao, Wei Yu,