کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6862144 | 1439264 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
CUPID: consistent unlabeled probability of identical distribution for image classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We consider the general problem of learning from both labeled and unlabeled data, which is often called semi-supervised learning (SSL) or transductive inference. A principled approach to SSL is to design a classification function that is sufficiently smooth with respect to the underlying structure collectively revealed by known labeled and unlabeled data. Combining transductive learning and inductive learning together, we present a simple and scalable algorithm to obtain such a smooth function, namely, Consistent Unlabeled Probability of Identical Distribution (CUPID). The labels of unlabeled data are taken as the probability, consistent to their identical distribution based on geometric structure of the unlabeled. The proposed algorithm yields encouraging experimental results on a number of image classification problems and demonstrates effective use of unlabeled data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 137, 1 December 2017, Pages 115-122
Journal: Knowledge-Based Systems - Volume 137, 1 December 2017, Pages 115-122
نویسندگان
Zhonglong Zheng, Jianshu Zhang, Suhang Zhu, Changbing Tang, Feilong Lin, Hui Lan, Zhongyu Chen, Jie Yang,