کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6862154 | 1439264 | 2017 | 33 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Stock market price data have non-linear, noisy and non-stationary structure, and therefore prediction of the price or its direction are both challenging tasks. In this paper, we propose a Convolutional Neural Network (CNN) architecture with a specifically ordered feature set to predict the intraday direction of Borsa Istanbul 100 stocks. Feature set is extracted using different indicators, price and temporal information. Correlations between instances and features are utilized to order the features before they are presented as inputs to the CNN. The proposed classifier is compared with a CNN trained with randomly ordered features and Logistic Regression. Experimental results show that the proposed classifier outperforms both Logistic Regression and CNN that utilizes randomly ordered features. Feature selection methods are also utilized to reduce training time and model complexity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 137, 1 December 2017, Pages 138-148
Journal: Knowledge-Based Systems - Volume 137, 1 December 2017, Pages 138-148
نویسندگان
Hakan Gunduz, Yusuf Yaslan, Zehra Cataltepe,