کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6862400 677243 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cross-domain polarity classification using a knowledge-enhanced meta-classifier
ترجمه فارسی عنوان
طبقه بندی قطبهای متقاطع با استفاده از متا طبقه بندی پیشرفته دانش
کلمات کلیدی
تجزیه و تحلیل احساسات، طبقه بندی قطب مخالف، فراشناخت، بیانیه واژگان معنایی، شبکه معنایی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Current approaches to single and cross-domain polarity classification usually use bag of words, n-grams or lexical resource-based classifiers. In this paper, we propose the use of meta-learning to combine and enrich those approaches by adding also other knowledge-based features. In addition to the aforementioned classical approaches, our system uses the BabelNet multilingual semantic network to generate features derived from word sense disambiguation and vocabulary expansion. Experimental results show state-of-the-art performance on single and cross-domain polarity classification. Contrary to other approaches, ours is generic. These results were obtained without any domain adaptation technique. Moreover, the use of meta-learning allows our approach to obtain the most stable results across domains. Finally, our empirical analysis provides interesting insights on the use of semantic network-based features.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 86, September 2015, Pages 46-56
نویسندگان
, , , ,