کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6862718 | 677015 | 2013 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic dominant character identification in fables based on verb analysis - Empirical study on the impact of anaphora resolution
ترجمه فارسی عنوان
شناسایی شخصیت مسلط غالب در افسانه ها براساس تجزیه و تحلیل فعلی - بررسی تجربی بر تاثیر انعطاف پذیری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Named entity recognition (NER) is a subtask in information extraction which aims to locate atomic element into predefined types. Various NER techniques and tools have been developed to fit the interest of the applications developed. However, most NER works carried out focus on non-fiction domain. Fiction based domain displays a complex context in locating its NE, specifically whereby its characters could be represented in diverse spectrums, ranging from living things (animals, plants, and person) to non-living things (vehicle, furniture). Motivated by a hypothesis such that there always exists verb specifically describes human being conduct, in this paper, we propose a NER system which aims to identify NEs that perform human activity based on verb analysis (VAHA) in an autonomous manner. More specifically, our approach attempts to identify dominant character (DC) by studying the nature of verb that associates with human activity via TreeTagger, Stanford packages and WordNet. Our experimental results validate our initial hypothesis that NEs can be accurately identified by referring to the associated verbs that associate with human activity. Our empirical study also proves that the approach is applicable to small text size articles. Another significant contribution of our approach is that it does not require training data set and anaphora resolution.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 54, December 2013, Pages 147-162
Journal: Knowledge-Based Systems - Volume 54, December 2013, Pages 147-162
نویسندگان
Hui-Ngo Goh, Lay-Ki Soon, Su-Cheng Haw,