کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6862815 677027 2013 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing semantic relatedness using Wikipedia features
ترجمه فارسی عنوان
محاسبه رابطه معنایی با استفاده از ویژگی های ویکی پدیا
کلمات کلیدی
وابستگی معنایی، ویکیپدیا، نمودار بخش ویکیپدیا، مرتبط بودن کلمه تجزیه و تحلیل معنایی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Measuring semantic relatedness is a critical task in many domains such as psychology, biology, linguistics, cognitive science and artificial intelligence. In this paper, we propose a novel system for computing semantic relatedness between words. Recent approaches have exploited Wikipedia as a huge semantic resource that showed good performances. Therefore, we utilized the Wikipedia features (articles, categories, Wikipedia category graph and redirection) in a system combining this Wikipedia semantic information in its different components. The approach is preceded by a pre-processing step to provide for each category pertaining to the Wikipedia category graph a semantic description vector including the weights of stems extracted from articles assigned to the target category. Next, for each candidate word, we collect its categories set using an algorithm for categories extraction from the Wikipedia category graph. Then, we compute the semantic relatedness degree using existing vector similarity metrics (Dice, Overlap and Cosine) and a new proposed metric that performed well as cosine formula. The basic system is followed by a set of modules in order to exploit Wikipedia features to quantify better as possible the semantic relatedness between words. We evaluate our measure based on two tasks: comparison with human judgments using five datasets and a specific application “solving choice problem”. Our result system shows a good performance and outperforms sometimes ESA (Explicit Semantic Analysis) and TSA (Temporal Semantic Analysis) approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 50, September 2013, Pages 260-278
نویسندگان
, , ,