کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6863063 1439404 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Decentralized adaptive neural control for high-order interconnected stochastic nonlinear time-delay systems with unknown system dynamics
ترجمه فارسی عنوان
کنترل عصبی انطباق تصادفی برای سیستم های تاخیر زمان غیر خطی با تاخیر زمانی با سیستم های دینامیکی ناشناخته
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
This paper is concerned with the problem of decentralized adaptive backstepping state-feedback control for uncertain high-order large-scale stochastic nonlinear time-delay systems. For the control design of high-order large-scale nonlinear systems, only one adaptive parameter is constructed to overcome the over-parameterization, and neural networks are employed to cope with the difficulties raised by completely unknown system dynamics and stochastic disturbances. And then, the appropriate Lyapunov-Krasovskii functional and the property of hyperbolic tangent functions are used to deal with the unknown unmatched time-delay interactions of high-order large-scale systems for the first time. At last, on the basis of Lyapunov stability theory, the decentralized adaptive neural controller was developed, and it decreases the number of learning parameters. The actual controller can be designed so as to ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error converges in the small neighborhood of zero. The simulation example is used to further show the validity of the design method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 99, March 2018, Pages 123-133
نویسندگان
, , ,