کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6863177 | 1439406 | 2018 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 97, January 2018, Pages 28-45
Journal: Neural Networks - Volume 97, January 2018, Pages 28-45
نویسندگان
Athul Sripad, Giovanny Sanchez, Mireya Zapata, Vito Pirrone, Taho Dorta, Salvatore Cambria, Albert Marti, Karthikeyan Krishnamourthy, Jordi Madrenas,