| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 6868883 | 1440037 | 2018 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust feature screening for ultra-high dimensional right censored data via distance correlation
ترجمه فارسی عنوان
غربالگری ویژگی های قوی برای داده های فوق العاده بالا اطلاعات سانسور شده از طریق همبستگی از راه دور
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
همبستگی فاصله، اطلاعات سانسور راست نمایش مشخصات قوی، مطمئنا غربالگری اموال،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Ultra-high dimensional data with right censored survival times are frequently collected in large-scale biomedical studies, for which feature screening has become an indispensable statistical tool. In this paper, we propose two new feature screening procedures based on distance correlation. The first approach performs feature screening through replacing the response and covariate by their cumulative distribution functions' Kaplan-Meier estimator and empirical distribution function respectively, while the second one modifies the distance correlation via an idea of composite quantile regression. The sure screening properties are established under some rather mild technical assumptions, which allow that the dimensionality increases at an exponential rate of the sample size. The proposed methods have three desirable characteristics. Firstly, they are model-free and thus robust to model misspecification. Secondly, they behave reliably when some features contain outliers or follow heavy-tailed distributions. Thirdly, our procedures have better convergence rate than that of distance correlation screening in Li et al. (2012b). Both simulated and real examples show that the proposed methods perform competitively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 119, March 2018, Pages 118-138
Journal: Computational Statistics & Data Analysis - Volume 119, March 2018, Pages 118-138
نویسندگان
Xiaolin Chen, Xiaojing Chen, Hong Wang,
