کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6868914 681345 2017 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximate maximum likelihood estimation using data-cloning ABC
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Approximate maximum likelihood estimation using data-cloning ABC
چکیده انگلیسی
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods is models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called “data cloning” for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g-and-k distributions, stochastic differential equations and state-space models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 105, January 2017, Pages 166-183
نویسندگان
, ,