کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6868946 | 681490 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
n-consistent density estimation in semiparametric regression models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The authors propose an estimator for the density of the response variable in the parametric mean regression model where the error density is left unspecified. With the application of empirical process theory, they derive its n-consistency and asymptotical normality. This result is further extended to models which allow possible parametric misspecification on the regression function and a special location-scale model. However, it is found that n-consistency breaks down in the presence of endogeneity. Monte Carlo simulations show that the proposed estimators have superior performance in finite sample compared to other density estimators available in the literature. Two real data illustrations reveal the advantage of the proposed density estimator over the Rosenblatt-Parzen kernel density estimator.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 104, December 2016, Pages 91-109
Journal: Computational Statistics & Data Analysis - Volume 104, December 2016, Pages 91-109
نویسندگان
Shuo Li, Yundong Tu,