کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6868958 | 681490 | 2016 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Robust methods for heteroskedastic regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Heteroskedastic regression data are modelled using a parameterized variance function. This procedure is robustified using a method with high breakdown point and high efficiency, which provides a direct link between observations and the weights used in model fitting. This feature is vital for the application, the analysis of international trade data from the European Union. Heteroskedasticity is strongly present in such data, as are outliers. A further example shows that the new method outperforms ordinary least squares with heteroskedasticity robust standard errors, even when the form of heteroskedasticity is mis-specified. A discussion of computational matters concludes the paper. An appendix presents the new scoring algorithm for estimation of the parameters of heteroskedasticity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 104, December 2016, Pages 209-222
Journal: Computational Statistics & Data Analysis - Volume 104, December 2016, Pages 209-222
نویسندگان
Anthony C. Atkinson, Marco Riani, Francesca Torti,