کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6869082 681495 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
State space modeling of Gegenbauer processes with long memory
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
State space modeling of Gegenbauer processes with long memory
چکیده انگلیسی
An approximation of a Gegenbauer autoregressive moving average (GARMA) process with long memory using a finite order moving average (MA) representation is considered. The state space form of the MA approximation is developed and the corresponding estimates are obtained by pseudo maximum likelihood using the Kalman filter. For comparative purposes the same exercise is executed with an autoregressive (AR) approximation. Using an extensive Monte Carlo experiment, optimal order of the chosen MA approximation is established, and found it was not very large (around 35) and rather insensitive to the sample size. Further evidence suggests the approximation is reliable for forecasting and signal extraction with periodic long memory components. A rolling forecasting experiment was performed to validate the choice of optimal order of both AR and MA approximations in terms of predictive accuracy. Finally, the proposed methodology was applied to two yearly sunspots time series, and compared with corresponding results proposed in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 100, August 2016, Pages 115-130
نویسندگان
, , ,