کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6869255 | 681349 | 2016 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
SMILE: A novel dissimilarity-based procedure for detecting sparse-specific profiles in sparse contingency tables
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A novel statistical procedure for clustering individuals characterized by sparse-specific profiles is introduced in the context of data summarized in sparse contingency tables. The proposed procedure relies on a single-linkage clustering based on a new dissimilarity measure designed to give equal influence to sparsity and specificity of profiles. Theoretical properties of the new dissimilarity are derived by characterizing single-linkage clustering using Minimum Spanning Trees. Such characterization allows the description of situations for which the proposed dissimilarity outperforms competing dissimilarities. Simulation examples are performed to demonstrate the strength of the new dissimilarity compared to 11 other methods. The analysis of a genomic dataset dedicated to the study of molecular signatures of selection is used to illustrate the efficiency of the proposed method in a real situation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 99, July 2016, Pages 171-188
Journal: Computational Statistics & Data Analysis - Volume 99, July 2016, Pages 171-188
نویسندگان
Mathieu Emily, Christophe Hitte, Alain Mom,