کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6869272 | 681349 | 2016 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Generalized Poisson autoregressive models for time series of counts
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To better describe the characteristics of time series of counts such as over-dispersion, asymmetry, structural change, and a large proportion of zeros, this paper considers a class of generalized Poisson autoregressive models that properly capture flexible asymmetric and nonlinear responses through a switching mechanism. We also investigate zero-inflated generalized Poisson autoregressive models with a structural break that can cope with data having a large portion of zeros and changes in dynamics. We employ an adaptive Markov Chain Monte Carlo (MCMC) sampling scheme to locate the structural break and to estimate model parameters. As an illustration, we conduct a simulation study and empirical analysis of New South Wales crime data sets. Our findings show a remarkable improvement by modeling the data based on such generalized Poisson autoregressive models and the Bayesian method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 99, July 2016, Pages 51-67
Journal: Computational Statistics & Data Analysis - Volume 99, July 2016, Pages 51-67
نویسندگان
Cathy W.S. Chen, Sangyeol Lee,