کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6869408 | 681363 | 2016 | 25 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Principal minimax support vector machine for sufficient dimension reduction with contaminated data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To make sufficient dimension reduction methods be able to handle contaminated data, a principal minimax support vector machine is suggested to identifying the central subspace. For sparse sufficient dimension reduction, this method of adaptive elastic net type is suggested to make estimation more accurate. The methods are extended to deal with transformed sufficient dimension reduction against contaminated data. The asymptotic unbiasedness and exhaustiveness are proved from the viewpoint of sufficient dimension reduction, and the sparseness and model selection consistency are showed from the viewpoint of variable selection. Simulations and real data analysis are conducted to examine the finite sample performances of the proposed methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 94, February 2016, Pages 33-48
Journal: Computational Statistics & Data Analysis - Volume 94, February 2016, Pages 33-48
نویسندگان
Jingke Zhou, Lixing Zhu,