کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6869467 | 681363 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multivariate Fay-Herriot models for small area estimation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Multivariate Fay-Herriot models for estimating small area indicators are introduced. Among the available procedures for fitting linear mixed models, the residual maximum likelihood (REML) is employed. The empirical best predictor (EBLUP) of the vector of area means is derived. An approximation to the matrix of mean squared crossed prediction errors (MSE) is given and four MSE estimators are proposed. The first MSE estimator is a plug-in version of the MSE approximation. The remaining MSE estimators combine parametric bootstrap with the analytic terms of the MSE approximation. Several simulation experiments are performed in order to assess the behavior of the multivariate EBLUP and for comparing the MSE estimators. The developed methodology and software are applied to data from the 2005 and 2006 Spanish living condition surveys. The target of the application is the estimation of poverty proportions and gaps at province level.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 94, February 2016, Pages 372-390
Journal: Computational Statistics & Data Analysis - Volume 94, February 2016, Pages 372-390
نویسندگان
Roberto Benavent, Domingo Morales,