کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6869481 | 681112 | 2015 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variational algorithms for biclustering models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Biclustering is an important tool in exploratory statistical analysis which can be used to detect latent row and column groups of different response patterns. However, few studies include covariate data directly into their biclustering models to explain these variations. A novel biclustering framework that considers both stochastic block structures and covariate effects is proposed to address this modeling problem. Fast approximation estimation algorithms are also developed to deal with a large number of latent variables and covariate coefficients. These algorithms are derived from the variational generalized expectation-maximization (EM) framework where the goal is to increase, rather than maximize, the likelihood lower bound in both E and M steps. The utility of the proposed biclustering framework is demonstrated through two block modeling applications in model-based collaborative filtering and microarray analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 89, September 2015, Pages 12-24
Journal: Computational Statistics & Data Analysis - Volume 89, September 2015, Pages 12-24
نویسندگان
Duy Vu, Murray Aitkin,