کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6869525 681112 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models
چکیده انگلیسی
Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcmcEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 89, September 2015, Pages 126-133
نویسندگان
, , , , ,