کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6869981 681132 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Robust ranking of multivariate GARCH models by problem dimension
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Robust ranking of multivariate GARCH models by problem dimension
چکیده انگلیسی
Several Multivariate GARCH (MGARCH) models have been proposed, and recently such MGARCH specifications have been examined in terms of their out-of-sample forecasting performance. An empirical comparison of alternative MGARCH models is provided, which focuses on the BEKK, DCC, Corrected DCC (cDCC), CCC, OGARCH models, Exponentially Weighted Moving Average, and covariance shrinking, all fitted to historical data for 89 US equities. Notably, a wide range of models, including the recent cDCC model and the covariance shrinking method, are used. Several tests and approaches for direct and indirect model comparison, including the Model Confidence Set, are considered. Furthermore, the robustness of model rankings to the cross-sectional dimension of the problem is analyzed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 76, August 2014, Pages 172-185
نویسندگان
, ,