کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6870097 | 681132 | 2014 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variance clustering improved dynamic conditional correlation MGARCH estimators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well-known that the estimated GARCH dynamics exhibit common patterns. Starting from this fact the Dynamic Conditional Correlation (DCC) model is extended by allowing for a clustering structure of the univariate GARCH parameters. The model can be estimated in two steps, the first devoted to the clustering structure, and the second focusing on dynamic parameters. Differently from the traditional two-step DCC estimation, large system feasibility of the joint estimation of the whole set of model's dynamic parameters is achieved. A new approach to the clustering of GARCH processes is also introduced. Such an approach embeds the asymptotic properties of the univariate quasi-maximum-likelihood GARCH estimators into a Gaussian mixture clustering algorithm. Unlike other GARCH clustering techniques, the proposed method provides a natural estimator of the number of clusters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 76, August 2014, Pages 556-576
Journal: Computational Statistics & Data Analysis - Volume 76, August 2014, Pages 556-576
نویسندگان
Gian Piero Aielli, Massimiliano Caporin,