کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6870506 681394 2014 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using random subspace method for prediction and variable importance assessment in linear regression
ترجمه فارسی عنوان
با استفاده از روش زیر فضای تصادفی برای پیش بینی و ارزیابی اهمیت متغیر در رگرسیون خطی
کلمات کلیدی
روش فضای تصادفی، انتخاب مدل بلندمدت، پیش بینی، اهمیت متغیر، نرخ انتخاب مثبت، نرخ کشف دروغ،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
A random subset method (RSM) with a new weighting scheme is proposed and investigated for linear regression with a large number of features. Weights of variables are defined as averages of squared values of pertaining t-statistics over fitted models with randomly chosen features. It is argued that such weighting is advisable as it incorporates two factors: a measure of importance of the variable within the considered model and a measure of goodness-of-fit of the model itself. Asymptotic weights assigned by such a scheme are determined as well as assumptions under which the method leads to consistent choice of significant variables in the model. Numerical experiments indicate that the proposed method behaves promisingly when its prediction errors are compared with errors of penalty-based methods such as the lasso and it has much smaller false discovery rate than the other methods considered.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 71, March 2014, Pages 725-742
نویسندگان
, ,