کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6871226 1440180 2018 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Upper bounds of r-hued colorings of planar graphs
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Upper bounds of r-hued colorings of planar graphs
چکیده انگلیسی
For positive integers k and r, a (k,r)-coloring of a graph G is a proper k-coloring of the vertices such that every vertex of degree d is adjacent to vertices with at least min{d,r} different colors. The r-hued chromatic number of a graph G, denoted by χr(G), is the smallest integer k such that G has a (k,r)-coloring. In Song et al. (2014), it is conjectured that if r≥8, then every planar graph G satisfies χr(G)≤⌈3r2⌉+1. Wegner in 1977 conjectured that the above-mentioned conjecture holds when r=Δ(G). This conjecture, if valid, would be best possible in some sense. In this paper, we prove that, if G is a planar graph and r≥8, then χr(G)≤2r+16.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 243, 10 July 2018, Pages 262-269
نویسندگان
, ,